CS61A disc04 树的递归
edit time: 2024-07-19 19:11:45
describing the recursive case in words
For the following questions, don't start trying to write code right away. Instead, start by describing the recursive case in words. Some examples:
- In
fib
from lecture, the recursive case is to add together the previous two Fibonacci numbers. - In
double_eights
from lab, the recursive case is to check for double eights in the rest of the number. - In
count_partitions
from lecture, the recursive case is to partitionn-m
using parts up to sizem
and to partitionn
using parts up to sizem-1
.
Q1: Insect Combinatorics
基础情况略。
递归情况:从左下出发的路径的可能数,是第一步往上走、之后的路径的可能数 加 第一步往右走,之后的路径的可能数。
def paths(m, n):
"""Return the number of paths from one corner of an
M by N grid to the opposite corner.
>>> paths(2, 2)
2
>>> paths(5, 7)
210
>>> paths(117, 1)
1
>>> paths(1, 157)
1
"""
"*** YOUR CODE HERE ***"
if m == 1 or n == 1:
return 1
return paths(m - 1, n) + paths(m, n - 1)
Q2: Even weighted
先理解题目含义:
x = [1, 2, 3, 4, 5, 6]
,下标从0开始,只留下标为0, 2, 4
的三个元素即 [1, 3, 5]
,之后将每个元素与之前提到的偶数下标相乘,即 [1 * 0, 3 * 2, 5 * 4] = [0, 6, 20]
。
def even_weighted_loop(s):
"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> even_weighted_loop(x)
[0, 6, 20]
"""
"*** YOUR CODE HERE ***"
result = []
for i in range(len(s)):
if (i % 2 == 0):
result += [s[i] * i]
return result
def even_weighted_comprehension(s):
"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> even_weighted_comprehension(x)
[0, 6, 20]
"""
return [s[i] * i for i in range(len(s)) if i % 2 == 0]
Q3: Has Path
递归情况:如果本节点值等于路径第一位,子分支中存在一个分支满足路径的剩余部分,则返回真。
硬控我好几分钟的地方是python的列表切片后如果长度为1,仍然是一个列表。令人忍俊不禁。
def has_path(t, p):
"""Return whether tree t has a path from the root with labels p.
>>> t2 = tree(5, [tree(6), tree(7)])
>>> t1 = tree(3, [tree(4), t2])
>>> has_path(t1, [5, 6]) # This path is not from the root of t1
False
>>> has_path(t2, [5, 6]) # This path is from the root of t2
True
>>> has_path(t1, [3, 5]) # This path does not go to a leaf, but that's ok
True
>>> has_path(t1, [3, 5, 6]) # This path goes to a leaf
True
>>> has_path(t1, [3, 4, 5, 6]) # There is no path with these labels
False
"""
if p == [label(t)]: # when len(p) is 1
return True
elif label(t) != p[0]:
return False
else:
"*** YOUR CODE HERE ***"
for child in branches(t):
if has_path(child, p[1:]):
return True
return False
# one line version:
# return True in [has_path(child, p[1:]) for child in branches(t)]
Q4: Find Path
不妨先抛弃题目模板,自行思考。
仍然满足上一题“子情况中存在一个满足则返回该子情况,子情况全部不满足才返回不满足”。
def find_path(t, x):
"""
>>> t2 = tree(5, [tree(6), tree(7)])
>>> t1 = tree(3, [tree(4), t2])
>>> find_path(t1, 5)
[3, 5]
>>> find_path(t1, 4)
[3, 4]
>>> find_path(t1, 6)
[3, 5, 6]
>>> find_path(t2, 6)
[5, 6]
>>> print(find_path(t1, 2))
None
"""
if label(t) == x:
return [label(t)]
else:
for child in branches(t):
if find_path(child, x):
return [label(t)] + find_path(child, x)
return None
之后尝试与题目模板格式匹配:
def find_path(t, x):
"""
>>> t2 = tree(5, [tree(6), tree(7)])
>>> t1 = tree(3, [tree(4), t2])
>>> find_path(t1, 5)
[3, 5]
>>> find_path(t1, 4)
[3, 4]
>>> find_path(t1, 6)
[3, 5, 6]
>>> find_path(t2, 6)
[5, 6]
>>> print(find_path(t1, 2))
None
"""
if label(t) == x:
return [label(t)]
for child in branches(t):
path = find_path(child, x)
if path:
return [label(t)] + path
return None
(当时在for
那里的空填了else
,想到一个 path = any([find_path(child, x) for child in branches(t)])
,之后会麻烦亿点、而且跟path
这个变量名不匹配,xsl)
Q5: Sprout Leaves
注意题目要求构造tree
,而且在branches
里的也是tree
。
思路很简单:
如果是叶,则构造一个标签相同、带了新叶的树返回;
如果不是叶,则构造一个标签相同、每个分支完成了sprout leaves
(即题设要求的函数)的树返回。
def sprout_leaves(t, leaves):
"""Sprout new leaves containing the labels in leaves at each leaf of
the original tree t and return the resulting tree.
>>> t1 = tree(1, [tree(2), tree(3)])
>>> print_tree(t1)
1
2
3
>>> new1 = sprout_leaves(t1, [4, 5])
>>> print_tree(new1)
1
2
4
5
3
4
5
>>> t2 = tree(1, [tree(2, [tree(3)])])
>>> print_tree(t2)
1
2
3
>>> new2 = sprout_leaves(t2, [6, 1, 2])
>>> print_tree(new2)
1
2
3
6
1
2
"""
"*** YOUR CODE HERE ***"
if is_leaf(t):
return tree(label(t), [tree(val) for val in leaves])
return tree(label(t), [sprout_leaves(branch, leaves) for branch in branches(t)])
Q6: Tree Deciphering
result
的值是t1
和t2
中较大的那棵树的所有子分支中最小的分支的标签。
“大”与“小”通过比较label(t)
判断。
(max(s, key=f)
returns the item x
in s
for which f(x)
is largest.
max([t1, t2], key=label)
returns the tree with the largest label, in this case t2
.)
def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch), 'branches must be trees'
return [label] + list(branches)
def label(tree):
return tree[0]
def branches(tree):
return tree[1:]
def is_leaf(tree):
return not branches(tree)
def is_tree(tree):
if type(tree) != list or len(tree) < 1:
return False
for branch in branches(tree):
if not is_tree(branch):
return False
return True
t2 = tree(5, [tree(6), tree(7)])
t1 = tree(3, [tree(4), t2])
result = label(min(branches(max([t1, t2], key=label)), key=label))
print(result)